
Improving Artificial Intelligence

In a Motocross Game

Benoit Chaperot
School of Computing
University of Paisley

Scotland
benoit.chaperot@paisley.ac.uk

Colin Fyfe
School of Computing
University of Paisley

Scotland
colin.fyfe@paisley.ac.uk

Abstract— We have previously investigated the use of artificial
neural networks to ride simulated motorbikes in a new com-
puter game. These artificial neural networks were trained using
two different training techniques, the Evolutionary Algorithms
and the Backpropagation Algorithm. In this paper, we detail
some of the investigations to improve the training, with a view
to having the computer controlled bikes performing as well or
better than a human player at playing the game. Techniques
investigated here to improve backpropagation are bagging and
boosting, while alternative crossover techniques have also been
investigated to improve Evolution.

Keywords: Motorbikes, Computational Intelligence, Ar-
tificial Neural Networks, Back Propagation, Evolutionary
Algorithm, Genetic Algorithm, Driving Game.

I. INTRODUCTION

We [1] have previously investigated the use of artificial
neural networks to ride simulated motorbikes in a new
computer game. In this paper, we investigate techniques for
improving the training of artificial neural networks to ride
simulated motorbikes in a new computer game. The use
of such methods in control is not new (see e.g.[2], [3]),
but it is one of the first time these methods are applied
to a video game (see e.g.[4]). Two training techniques
are used, Evolutionary Algorithms and the Backpropagation
Algorithm. To improve the Backpropagation Algorithm in
this paper, two optimisation techniques for augmenting the
training are used: bagging [5] and boosting [6]. There are
various interesting aspects in using artificial neural networks
(ANN’s) in a motocross game. The main reason is that,
although the control of the bike is assisted by the game
engine, turning the bike, accelerating, braking and jumping
on the bumps involve behaviours which are difficult to
express as a set of procedural rules, and make the use of
ANN’s very appropriate. Our main aim is then to have the
ANN’s to perform as well as possible at riding the motorbike.
We suspect that we can train the network to play better than
any living player; however, an ANN can always be penalised
at a later stage if it becomes so good that it decreases the
enjoyment of human competitors.

II. THE GAME

There are various interesting aspects in using artificial
neural network methods in a motocross game. Because the
design of an ANN’s is motivated by analogy with the brain,
and the rationale for their use in the current context is that

entities controlled by ANN’s are expected to behave in a
human or animal manner, these behaviours can add some
life and content to the game. The human player has also the
possibility to create new tracks. ANN’s have the capability
to perform well and extrapolate when presented with new
and different sets of inputs from the sets that were used to
train them; hence an ANN trained to ride a motorbike on a
track should be able to ride the same motorbike on another
similar track. ANN’s are adaptible in that their parameters
can be trained or evolved. ANN’s may be able to perform
with good lap times on any given track while still retaining
elements of human behaviour.

Motocross The Force is a motocross game featuring terrain
rendering and rigid body simulation applied to bikes and
characters. An example of it in use can be seen at

http://cis.paisley.ac.uk/chap-ci1

and a screen shot from the game is shown in Figure 1.
The game has been developed and is still being developed
in conjunction with Eric Breistroffer (2D and 3D artist). A
track has been created in a virtual environment and the game
involves riding a motorbike as quickly as possible round the
track while competing with other riders who are software-
controlled.

There is one position known as a way point which marks
the position and orientation of the centre of the track, every
metre along the track. These way points are used to ensure
bikes follow the track and we will discuss positions in way
point space when giving positions with respect to the way
points.

For example, for the evolutionary algorithms, the score is
calculated as follows:

• vPassWayPointBonus is a bonus for passing
through a way point.

• vMissedWayPointBonus is a bonus/penalty (i.e.
normally negative) for missing a way point.

• vCrashBonus is a bonus/penalty (i.e. normally neg-
ative) for crashing the bike.

• vFinalDistFromWayPointBonusMultiplier is a
bonus/penalty (i.e. normally negative) for every metre
away from the centre of the next way point.

The inputs to the ANN are:

• Position of the bike in way point space.



Fig. 1. Screen shot taken from the game; the white crosses represent the
position of the track centre lane; there are 13 samples which are used as
inputs to the ANN.

• Front and right directions of the bike in way point space.
• Velocity of the bike in way point space.
• Height of the ground, for b (typically 1) ground sam-

ples, in front of the bike, relative to bike height.
• Position of track centre lane, for c (typically 13) track

centre lane samples, in front of the bike, in bike space.

The outputs of the ANN are the same as the controls for
a human player:

• Accelerate, decelerate.
• Turn left, right.
• Lean forward, backward

III. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are usually software simulations
which are models at some level of real brains. We will, in
this paper, use multilayered perceptrons (MLP) though other
types of neural networks [7] may be equally useful for the
task in this paper.

The MLP consists of an input layer, x, whose neurons are
passive in that they merely hold the activation corresponding
to the information to which the network must respond. In our
case this will be local information about the terrain which the
artificial rider is currently meeting. There is also an output
layer, y, which in our case will correspond to the actions
(turn left/right, accelerate/decelerate, lean forward/backward)
which are required to ride the bike. Between these two
layers is the hidden layer of neurons which is so-called as
it cannot directly communicate in any way with the external
environment; it may only be reached via the input neurons
and only affects the environment via the output neurons.

The MLP is used in two phases: activation passing and
learning. Activation is passed from inputs to hidden neurons
through a set of weights, W . At the hidden neurons, a
nonlinear activation function is calculated; this is typically a
sigmoid function, e.g. 1

1+exp(−act) which mimics the satura-
tion effects on real neurons. Let us have N input neurons, H
hidden neurons, and O output neurons. Then the calculation

at the hidden neurons is:

acti =
N∑

j=1

Wijxj ,∀i ∈ 1, ..., H

hi =
1

1 + exp(−acti)

where hi is the firing of the ith hidden neuron. This is then
transmitted to the output neurons through a second set of
weights, V , so that:

acti =
H∑

j=1

Vijhj , ∀i ∈ 1, ..., O

oi =
1

1 + exp(−acti)

Thus activation is passed from inputs to outputs. The whole
machine tries to learn an appropriate mapping so that some
function is being optimally performed. Such networks use
supervised learning to change the parameters, W and V
i.e. we must have a set of training data which has the
correct answers associated with a set of input data. The most
common method is the backpropagation algorithm.

In the experiments discussed in this paper, we used the
same activation function at the outputs as at the hidden
neurons.

IV. THE BACKPROPAGATION ALGORITHM

Let the P th input pattern be xP , which after passing
through the network evokes a response oP at the output
neurons. Let the target value associated with input pattern
xP be tP . Then the error at the ith output is EP

i = tPi − oP
i

which is then propagated backwards (hence the name) to
determine what proportion of this error is associated with
each hidden neuron. The algorithm is:

1) Initialise the weights to small random numbers
2) Choose an input pattern, xP , and apply it to the input

layer
3) Propagate the activation forward through the weights

till the activation reaches the output neurons
4) Calculate the δs for the output layer δP

i = (tPi −
oP

i )f ′(ActPi ) using the desired target values for the
selected input pattern.

5) Calculate the δs for the hidden layer using
δP
i =

∑N
j=1 δP

j wji.f
′(ActPi )

6) Update all weights according to ∆P wij = γ.δP
i .oP

j

7) Repeat steps 2 to 6 for all patterns.
An alternative technique for computing the error in the

output layer while performing backpropagation has been
investigated. Instead of computing the error as (tPi − oP

i ),
the error has been computed as (tPi −oP

i )|tPi −oP
i |. This has

for effect to train the ANN more when the error is large, and
allow the ANN to make more decisive decisions, with regard
to turning left or right, accelerating or braking and leaning
forward/back.

The backpropagation algorithm in the context of this
motocross game requires the creation of training data made



from a recording of the game played by a good human
player. The targets are the data from the human player i.e.
how much acceleration/deceleration, left/right turning and
front/back leaning was done by the human player at that point
in the track. The aim is to have the ANN reproduce what a
good human player is doing. The human player’s responses
need not be the optimal solution but a good enough solution
and, of course, the ANN will learn any errors which the
human makes.

We investigated two techniques to improve the training,
bagging and boosting.

V. ENSEMBLE METHODS

Recently a number of ways of combining predictors have
been developed e.g. [8], [9], [6], [10]. Perhaps the simplest
is bagging predictors. The term “bagging” was coined by
joining bootstrapping and aggregating- we are going to
aggregate predictors and in doing so we are bootstrapping
a system. We note that the term “bootstrapping” was derived
from the somewhat magical possibilities of “pulling oneself
up by one’s bootstraps” and the process of aggregating
predictors in this way does give a rather magical result -
the aggregated predictor is much more powerful than any
individual predictor trained on the same data. It is no wonder
that statisticians have become very convincing advocates of
these methods.

A. Using Bagging

In ([1]), the ANN was trained using training data made
from a recording of the game being played by a good human
player. The data was made from the recording of the first
author playing the game on many different motocross tracks
(here 10). Bootstrapping [8] is a simple and effective way of
estimating a statistic of a data set. Let us suppose we have
a data set, D = {xi, i = 1, . . . , N}. The method consists of
creating a number of pseudo data sets, Di, by sampling from
D with uniform probability with replacement of each sample.
Thus each data point has a probability of (N−1

N )N ≈ 0.368
of not appearing in each bootstrap sample, Di. Each predictor
is then trained separately on its respective data set and the
bootstrap estimate is some aggregation (almost always a
simple averaging) of the estimate of the statistic from the
individual predictors. Because the predictors are trained on
slightly different data sets, they will disagree in some places
and this disagreement can be shown to be beneficial in
smoothing the combined predictor. Typically, the algorithm
can be explained as follows:

1) Create N bags by randomly sampling from the data set
with replacement.

2) The probability for a piece of data to be in the bag is
approximately 0.63.

3) ANN’s are trained on the bags separately.
4) The trained ANN’s are then presented with an input

and the outputs of the ANN’s are combined.

TABLE I

BAGGING RESULTS

NN Trained Training Data Lap Time
On Track Length (sec) Track m16

0 Expert 234.41 1’58”
1 hat 144.42 6’43”
2 hillclimb 35.36 4’01”
3 jat 339.69 4’24”
4 L 261.51 2’22”
5 m1 247.32 4’45”
6 m10 131.72 NA
7 m11 187.47 14’25”
8 m12 100.62 4’08”
9 m13 112.06 6’21”
Average (0,9) ALL ALL 1’38”
11 ALL 1794.58 1’31”
Good Human ALL NA 1’23”

The combination operator, in spirit similar to [10], used
was as below:

OANN = OAV E ∗ (1− w) + OWIN ∗ w; (1)

With OAV E , the average of all ANN’s outputs, OWIN , the
output of the most confident ANN, which is the output with
the largest magnitude, and w a parameter varying from 0
to 1. Experiments were done using ten ANN’s. Experiments
have shown that:

1) With w = 0, the combined output was a smooth output,
and the computer controlled bikes tended to ride in a
slow but safe manner.

2) With w = 1 (similar to “bumping” [10]) , the combined
output was a decisive output and the computer con-
trolled bikes tended to ride in a fast but risky manner.

This w parameter can allow to change the computer
controlled bike behaviour, and could be used to have the
artificial intelligence performance match that of the player.
However, experiments proved that whatever the value for
w, the performance was still a lot less than that of a good
human player, and similar to or less than that of a single
ANN trained using the entire training set.

Better results were achieve by, instead of creating bags by
randomly sampling from data set, creating bags by sampling
data according to data origin i.e. from data from a single
track. The data set was made from the recording of the first
author playing the game on ten motocross tracks. Now each
bag contained data for one separate motocross track. The
results are given in Table I.

(1) was used for combination with w equal to zero (pure
averaging which is exactly bagging) and Table I shows that
the combination of ten ANN’s is better than every single
ANN taken separately, but still not as good as another ANN
trained using the full data set.

B. Using Boosting

There has been recent work identifying the most important
data samples [11]; and presenting the ANN more with the



most important data samples (boosting [6]). We investigated
the effect of different types of training data. For example,
some parts of the track are relatively easy and the rider can
accelerate quickly over these while other parts are far more
difficult and so more care must be taken. The latter parts are
also those where most accidents happen. Our first conjecture
was that training the neural network on these more difficult
parts might enable it to concentrate its efforts on the difficult
sections of the track and so a training routine was developed
in which each training sample has a probability to be selected
for training the ANN proportional to the error produced the
last time the sample was presented to the ANN. This allows
us to train the ANN with more difficult situations.

The first algorithm was not efficient; it was storing an
average error value for each of the training samples, which
is not memory efficient, and made use of a roulette to select
the samples according to the average error, which is not
processing efficient. There was a time during which the
average error was computed, and then the average error was
reset. The algorithm was complicated, was making use of
many parameters and was hard to tune.

Then, it appeared that because the learning rate is low,
the ANN does not change very much with time, and it is
possible to use the instantaneous error, and not the average
error. Instead of selecting samples according to the error the
sample produces, it is possible to select samples randomly,
evaluate the error, and modify the instantaneous learning rate
according to this instantaneous error.

The training routine had a negative effect on the training.
Without the routine, the average lap time was 2 minutes and
40 seconds. With the routine, the average lap time was 3
minutes. On the other hand, when the routine was inverted
(so that the backpropagation was performed with a learning
rate proportional to the inverse of the error produced by the
sample) this had a positive effect. The ANN performed better
when being trained more with the easy samples.

Finally, the learning rate multiplier (to compute the ef-
fective learning rate from the original learning rate) was
evaluated as:

m = MIN(0.1, 1− Error); (2)

Using this technique, after 24 hours of training, or
34560000 iterations, the ANN average lap time can go down
from 2 minutes 30 seconds on track L, to only 2 minutes 18
seconds. Training can take a long time, because the ANN
has to train and select the right set of training samples at the
same time.

Our alternative technique for computing the error in the
output layer while performing backpropagation as (tPi −
oP

i )|tPi − oP
i | was originally considered as having a positive

effect on the training because it allowed more decisive
decisions from the ANN, and proved to improve trained ANN
performance. Since the time this alternative technique was
implemented, the first author worked on the physics side of
the game and the handling of the motorbike has improved;

this alternative technique does not any more have a positive
effect on the final performance of the ANN. Worse, it can
have a negative effect.

It finally appeared that with the new physics, reverting to
the classic technique for computing the error in the output
layer, and removing the anti-boosting as described above
allowed the ANN to train faster and produced equally good
performances.

VI. EVOLUTIONARY ALGORITHMS

We can identify the problem of finding appropriate weights
for the MLP as an optimisation problem and have this
problem solved using the GA ([12]): we must code the
weights as floating point numbers and use the algorithm on
them with a score function.

The algorithm is:

1) Initialise a population of chromosomes randomly.
2) Evaluate the fitness of each chromosome (string) in the

population.
3) For each new child chromosome:

a) Select two members from the current population.
The chance of being selected is proportional to
the chromosomes’ fitness.

b) With probability, Cr, the crossover rate, cross
over the numbers from each chosen parent chro-
mosome at a randomly chosen point to create the
child chromosomes.

c) With probability, Mr, the mutation rate, modify
the chosen child chromosomes’ numbers by a
perturbation amount.

d) Insert the new child chromosome into the new
population.

4) Repeat steps 2-3 till convergence of the population.

An alternative technique for crossover has also been
investigated: instead of crossing over the numbers (corre-
sponding to the ANN’s weights) from each chosen parent
chromosome at a randomly chosen point to create the child
chromosomes, numbers from parents are averaged to create
the child chromosomes. This seems appropriate because we
are working with floating point numbers and not binary digits
and is a method which is sometimes used with the Evolution
Strategies [13] which are designed for use with floating point
numbers. Initial experimentation revealed that a blend of
these two techniques worked best. The particular crossover
technique was chosen randomly, with each technique being
given equal chance, for each new child chromosome and then
applied as usual.

Other techniques have also been tested: if starting the evo-
lution from a randomly initialised chromosome population,
we showed ([1]) that the ANN’s do not perform as well
as other ANN’s trained using backpropagation. Some tests
have been made starting the evolution from a population
of different ANN’s already trained using BP. One major
problem with doing crossover with ANN’s is that each
neuron has a functionality or part of the behaviour (for
example turning right), and while doing crossover, the child



chromosome may end up having twice the required number
of neurons for a given functionality (turning right) and no
neurons for another functionality (turning left). An attempt
has been made, to reorder neurons in the parent ANN’s,
according to similarities and apparent functionalities, just
before performing crossover, in order to reduce the problem.
This proved not to be successful, and ANN’s generated by
the crossover of two very different ANN’s still produced
bad random behaviours. Eventually, because of elitism, and
because crossover is not always performed, the population
converges towards one individual ANN, which is not always
the best one, and diversity in the population is lost. The best
way to solve the problem was to start with one individual
already trained ANN’s, and mutate it to generate a starting
population of differently mutated individuals. This proved
very successful.

Our ANN’s have 50 inputs, one hidden layer, 80 neurons
in this hidden layer and 3 outputs. The number of weights
to optimise is therefore 80*50+3*80=4240. Evolution can
take a very long time to optimise all those weights. One
optimisation technique was to discard in a early stage indi-
viduals which evaluate to be unfit, for example if the bike is
in an unrecoverable situation. This considerably reduces the
training time. However this optimisation can also sometimes
evaluate fit individual as not being fit. This optimisation has
therefore been removed and all ANN’s have been given the
same fixed evaluation time.

The number of cuts for crossover has been increased
from one to ten; this means up to 11 different parts of the
chromosomes can be swapped between parents to create the
child chromosomes. This allows after only one generation
combinations of chromosomes that would not have been
possible with only one cut. The cuts are also made on the
neurons’ boundaries.

Six bikes are racing along track L, and therefore six ANN’s
are evaluated at any given time. The evaluation time has been
set to 10 minutes, which means 30 minutes per generation.
Currently computer controlled bikes don’t see each other,
and collision between bikes has been disabled in order not
to have bikes interfere with one another.

The number of generations has been set to 100, with
a population of 18 ANN’s, elitism of 0 (number of the
fittest chromosomes being passed directly from the parent
population to the child population), a mutation rate of 0.001,
a crossover rate of 0.8, a perturbation rate of 0.5, probability
to select average crossover over 10 cuts crossover set to 0.2.

The training can take a long time to perform; however
there are big advantages in the evolutionary algorithm ap-
proach. The artificial intelligence can adapt to new tracks
and improve lap times with time; it is also possible that it
can eventually perform better than a good human player.

Using this technique, after 24 hours of training, ANN’s
average lap time can go down from 2 minutes 45 seconds
on the long track, to approximately 2 minutes 16 seconds.
Not all individuals in the population are performing equally
well. For comparison a good human player lap time is 2

minutes 10 seconds.

VII. MORE IMPROVEMENTS

The bike is moving and rotating a lot along the track.
It appeared that instead of expressing the position of track
centre lane in bike space, it was better to express it in forward
space; with forward being the direction of the velocity vector.
There are two main advantages in using the forward space
instead of the bike space to transform ground samples:

1) It does not rotate in time in relation to the ground as
much as the bike transform, so it allows the ANN to
more easily identify input patterns for ground samples.

2) Because the velocity direction is now contained in the
forward space used to transform ground samples, it is
now possible to express the velocity as a scalar and
not a vector and save two inputs for the ANN.

The bike maximum velocity was set slightly less for
computer bikes than for the human player bike (30m/s against
32m/s). This reduction in maximum velocity proved to have
a positive effect on the performance of computer bikes,
because it prevented many accidents, at a time where ANN’s
were not performing well. Now the ANN’s are performing
better; this reduction is considered to have a negative effect
and is removed.

Some new training data is created by having the first author
playing the game on the long track for 23 minutes (138000
samples), with average lap times of approximately 2 minutes
8 seconds. The first author could have tried to optimise the
training set, for example he could have ride in a safe manner,
taking extra care in the difficult portions of the track, and
avoiding obstacles using extra safe distance, in order for the
ANN to learn behaviours that would prevent them accidents;
instead, the first author played the game in a fast but risky
manner.

The Backpropagation propagation algorithm is used to
train an ANN on the training data. The number of iterations
is set to 2000000. The learning rate is set to decrease
logarithmically from 1 ∗ 10−2 to 1 ∗ 10−5. The training is
done online at a rate of 2500 iterations a second; this allows
the user to observe the ANN as it trains. After training, the
average lap time on track L for a computer controlled bike
is found to be 2 minutes 30 seconds.

Genetic algorithms are then used to improve the ANN.
The trained ANN is mutated to create a population of 20
ANN’s. The number of generations has been set to 100, with
a population of 20, elitism of 0, a mutation rate of 0.001,
a crossover rate of 0.8, a perturbation rate decreasing loga-
rithmically from 0.5 to 0.005, probability to select average
crossover over 10 cuts crossover set to 0.2.

The results can be found in the graph below:
From the graph one can see that the lap time is slowly

decreasing, but the average lap time in one generation is
not always better than the average lap time in the previous
generation. This is what was expected with GA. Note that
because the perturbation is decreasing logarithmically from
0.5 to a small value, 0.005, and because of the crossover



Fig. 2. The average lap time is slowly decreasing with respect to
generations, .

Fig. 3. On the left, track L used to train the ANN. On the right, track O,
used to test ANN generalisation property.

techniques used, the individuals in the final generation, at
the end of training, are expected to be very similar, and
weights between all ANN’s can easily be averaged over
all individuals to create one ANN representative of all a
population.

Finally, we want to check the generalisation property of
our ANN’s, we present the originally trained ANN (trained
using BP), and the optimised ANN (trained using BP and
then GA), with track O.

Track O is very different from track L. For example track
O features large hills and bumps, not present in track L.

The ANN’s are able to generalise. Lap times are 4 minutes
42 seconds for the originally trained ANN, and 4 minutes 34
seconds for the optimised ANN. The ANN’s simply seem
not to be familiar with the long straight and bumpy portions
of track O and are subject to time penalties every time the
game engine respawns the bike in the middle of the track.
The game engine respawns bikes in the middle of the track
if the bikes have been off the track for too long. The velocity
of the bikes at respawn is set to be generally less than the
velocity of the bikes before respawn; hence a time penalty.
For comparison a good human player lap time on this track
is 4 minutes 05 seconds.

VIII. CONCLUSIONS

Bagging required a lot of processing and memory re-
sources (it was using 10 ANN’s per bike instead of only 1),

Fig. 4. One large hill in track O.

and still did not prove to give good results. Two techniques,
investigated here to improve ANN’s training, have proved
to give good results; one is boosting, the other one is GA
with alternative crossover methods and a population made of
mutated already trained ANN’s. With evolutionary algorithm,
the artificial intelligence can adapt to new track and improve
lap times with time; possibly it can eventually perform
better than a good human player. Performance so far is
nearly as good as that of a good human player. Future work
may include optimising the techniques, or investigating new
techniques, to reduce training and adaptation time.

REFERENCES

[1] B. Chaperot and C. Fyfe, “Motocross and artificial neural networks,”
in Game Design And Technology Workshop 2005, 2005.

[2] S. Haykin, Neural Networks- A Comprehensive Foundation. Macmil-
lan, 1994.

[3] M. Buckland, “http://www.ai-junkie.com/,” Tech. Rep., 2005.
[4] Various, “http://research.microsoft.com/mlp/forza/,” Microsoft, Tech.

Rep., 2005.
[5] L. Breimen, “Bagging predictors,” Machine Learning, no. 24, pp. 123–

140, 1996.
[6] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:

a statistical view of boosting,” Statistics Dept, Stanford University,
Tech. Rep., 1998.

[7] C. Fyfe, “Local vs global models in pong,” in International Conference
on Artificial Neural Networks, ICANN2005, 2005.

[8] L. Breimen, “Using adaptive bagging to debias regressions,” Statistics
Dept, University of California, Berkeley, Tech. Rep. 547, February
1999.

[9] ——, “Arcing the edge,” Statistics Dept, University of California,
Berkeley, Tech. Rep. 486, June 1997.

[10] T. Heskes, “Balancing between bagging and bumping,” in Neural
Information Processing Sytems, NIPS7, 1997.

[11] V. Vapnik, The nature of statistical learning theory. New York:
Springer Verlag, 1995.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1989.

[13] I. Rechenberg, “Evolutionsstrategie,” University of Stuttgart, Tech.
Rep., 1994.


