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Abstract— Over recent years, the fall in cost, and increased
availability of motion capture equipment has led to an increase
in non-specialist companies being able to use motion capture
data to guide animation sequences for computer games and
other applications.[1] A bottleneck in the animation production
process is in the clean-up of capture sessions to remove and/or
correct anomalous (unusable) frames and noise. In this paper an
investigation is carried out on the use of a system comprising
of two layers of self-organising maps in identifying anomalous
frames in a magnetic motion capture session.

I. INTRODUCTION

Motion capture is the process of recording the motion of
actors and/or objects, and this data is often used in computer
games to animate characters and other game objects. The
process normally involves tracking sensors or markers that
have been placed in key positions on the actor’s body, and
detecting their locations in three-dimensional space. As the
cost of equipment decreases, the realm of Motion Capture
is no longer the preserve of specialist companies who take
care of all aspects of data capture and post-processing. The
task of supplying animation scenes from a motion capture
system is now seen as a commodity, and so the focus has
started to veer towards processing the output from a capture
session as quickly and cheaply as possible. By improving post-
processing, motion capture studios can get more useful (and
commercial) application out of the capture equipment.

In previous work ([4]), a statistical method based on the
variance of the distances between nodes, was used to detect
anomalous points, whilst Kovar and Gleicher [3] use distance
metrics to automatically detect similar motions in a session.
Müller et al. [5] focus on using geometric relations to perform
content-based retrieval and Gibson et al. [2] use principal
component analysis and a multi-layered perceptron to extract
motion information from a video or film. However, the latter
two methods of feature extraction or recognition still require
a considerable amount of input from an animator. Ideally, the
animator interaction would be either non-exisentant or minimal
and with this paper the aim is to investigate the usefulness
and accuracy of a two-layered unsupervised neural network to
the problem area of capture data clean-up. Section 2 gives an
overview of the factors that produce noise and anomalies into
the magnetic motion capture sessions, plus notes of the ideas

behind the network design. Section 3 describes the form of
the network and the parameters for learning, whilst section 4
provides a discussion and display of some of the results.

II. BACKGROUND

The noise that can be produced during a capture are split
into two types: sensor noise and positional anomalies. Sensor
noise comes about by small variations in the magnetic fields
used to induce a signal, the synchronization of the magnetic
phases and interference from unwanted metal objects in or
around the capture space. Positional anomalies come about
when the sensors move too close to or too far from the field
generators and where the sensors are unable to detect the
field strength accurately and so produce anomalous results.
The outcome being sensors reporting their positions that are
inverted in the vertical axis or placed at a seemingly random
position and breaking the skeleton of the captured article
(which can be human, animal or an inanimate object).

The fact that the system should work autonomously of all
external influences proscribes that, in a neural network method
of anomaly detection, Self-Organising Maps, SOMs, provide
one possible method for the system. The unsupervised nature
of the SOMs allows the system to train each net to a session’s
particular structural make-up. The approach outlined here uses
an initial layer of SOMs (one for each sensor in the capture
session) to create inputs for a higher, second-layer SOM,
thereby cutting the dimensionality of the final grid down by a
third.

III. METHODOLOGY

Data is read in and stored in a separate matrix for each
sensor in the session (called nodes from here on). Equation
1 shows one node’s data in one frame in the session, whilst
equation 2 (i is the node number and F is the total number
of frames) shows the overall storage matrix for a node.

ni(t) =
[

ni1(t) ni2(t) ni3(t)
]

(1)

Ni =


ni(1)
ni(2)

...
ni(F )

 (2)



For each node, a one-dimensional SOM is created and
initialised (equation 3 with 4 showing the weight vector of
a neuron, M is the number of neurons in the net). Each SOM
is trained for 100 epochs using only the data for its associated
node. One epoch uses every frame in the session, fed into the
network in a random order.

Si =


s1

s2

...
sM

 (3)

sm =
[

sm1 sm2 sm3

]
(4)

The Euclidean distance between the input vector and each
neuron in a SOM is calculated, and the neuron with the
minimum distance being declared the winner (see equation
5, i is the node number and k is the vector element).

ci = arg min
1≤j≤M

(

√√√√ 3∑
k=1

(nik
(t)− sjk

)2) (5)

The weights for the winning neuron are then updated using
equation 6 with α being the adaptive learning rate (equation 7,
T = 100F , where F is the total number of frames and tc is the
training cycle), and h1 is the gaussian neighbourhood function
(equation 8 and figure 1, j and ci are the neuron numbers of the
neuron being updated and winning neuron respectively) that
modifies the neurons closest to the winner more than those
further away.

s′l = sl + αh(ni(t)− sl) (6)

α = α0(1−
tc

T
) (7)

h1 = e
−(j−ci)

2

2 (8)

The outputs from each of these SOMs form the input vector
for the second-layer SOM (equation 9). The second-layer
SOM is a two-dimensional array of neurons (equation 10)
with each neuron having a weight vector of that shown in
equation 11. The winner is decided by the minimum Euclidean
distance, as in the first-layer SOMs, with the training updates
calculated using the same adaptive learning rate and gaussian
neighbourhood function h2 (equation 12, with R and C being
the row and column address of the neuron being updated and
cR and cC the row and column address of the winning neuron).

In =


c1

c2

...
cM

 (9)

Fig. 1. Graph of the Neighbourhood function used to updated the SOM
Weights

V =


v11 v12 · · · v1b

v21 v22 · · ·
...

...
. . .

...
va1 · · · vab

 (10)

v =


w1

w2

...
wM

 (11)

h2 = e
−(R−cR)2−(C−cC )2

2 (12)

In order to find the best combination of network sizes for
the first and second layer SOMs, a series of empirical studies
were carried out with the number of neurons in each of the
first-layer SOMs varying between 11 and 51 in increments of
10 neurons. For the second-layer SOMs, the size of the neuron
array was always kept square and used the following sizes:
11x11, 21x21, 31x31, 41x41, 51x51. The evaluation of what
makes one network better than another is a subjective matter.
Therefore, in order to make the decision more objective, three
criteria were used to evaluate each resultant net:

1) Separation of the differing areas of ”clean” and ”anoma-
lous” frames, the more defined a specific area is the
better.

2) Minimisation of ”Overlapping Points”, where one neu-
ron can win when a frame is either ”clean” or ”anoma-
lous”.

3) Reduction in the proportion of ”Missing Neurons”,ones
which do not win at any point for a session.

IV. RESULTS AND DISCUSSION

Initially the networks were tested on one file, F1, of 407
frames, that consists of a series of frames with the figure
inverted (blue ©), followed by a series of anomalous frames



(red +), then a series of clean frames (green 2), finishing
with a series of anomalous frames (magenta �). Due to this
there are three changeover points, from this it can be surmised
that there are strong possibilities of overlapping points being
generated at each of the changeovers. Hence the par score for
overlapping points is three.

No. of Neurons Total used Overlap Level of
1st Lyr 2nd Lyr Used neurons (%) Neurons Group

11 11 60 49.6 4 Fair
11 21 99 22.4 2 Poor
11 31 110 11.4 3 Poor
11 41 126 7.5 3 Poor
11 51 120 4.6 2 Fair
21 11 55 45.5 3 Poor
21 21 139 31.5 2 Fair
21 31 86 8.9 2 Poor
21 41 131 7.8 3 Poor
21 51 145 5.6 2 Good
31 11 49 40.5 3 Good
31 21 96 21.8 1 Good
31 31 115 12.0 3 Poor
31 41 116 6.9 3 Good
31 51 123 4.7 2 Fair
41 11 48 40.5 3 Poor
41 21 94 21.3 3 Good
41 31 97 10.1 2 Good
41 41 120 7.1 3 Fair
41 51 135 5.2 2 Good
51 11 51 42.1 3 Poor
51 21 122 27.7 2 Good
51 31 111 11.6 2 Fair
51 41 123 7.3 3 Fair
51 51 139 5.3 2 Good

TABLE I
TABLE OF RESULTS FOR THE EMPIRICAL STUDIES OF THE 2-LAYERED

SOM NETWORK

Fig. 2. Plot of the Winning Neurons for a 2-Layer SOM with 21 Neurons
in each First-Layer SOM and 51x51 in the Second-Layer SOM

Fig. 3. Plot of the Winning Neurons for a 2-Layer SOM with 31 Neurons
in each First-Layer SOM and 21x21 in the Second-Layer SOM

Fig. 4. Plot of the Winning Neurons for a 2-Layer SOM with 41 Neurons
in each First-Layer SOM and 21x21 in the Second-Layer SOM

Some of the results from the empirical tests are shown
above. Figures 2, 3 and 4 are examples of outcomes considered
good and figures 5, 6 and 7 are examples of bad outcomes. In
terms of timing issues a look at figure 8 shows that an increase
in the size of the first layer SOMs does not have a significant
effect on the training time of a network. However the increase
in the time needed to train larger second layer SOMs increases
in an exponential way.

From these results it was concluded that a second-layer
SOM of size 21-by-21 neurons provided results with appropri-
ate spread of the separate file groups. There is little difference
between the outcomes whether you had 31 or 41 neurons in
each first-layer SOM, but they produced the best grouping.
Therefore, these networks were re-run three times each to see
whether they produce consistency in their outcomes. Figure 9
show the results for the 31/21 network and figure 10 41/21



Fig. 5. Plot of the Winning Neurons for a 2-Layer SOM with 21 Neurons
in each First-Layer SOM and 41x41 in the Second-Layer SOM

Fig. 6. Plot of the Winning Neurons for a 2-Layer SOM with 51 Neurons
in each First-Layer SOM and 11x11 in the Second-Layer SOM

network.
From these it can be seen that although both networks can

reproduce their results they do not do so with complete consis-
tency. However, those produced by the 41/21x21 network have
a greater degree of consistency. To these ends this network
was tested with 3 other, much larger files (all 2823 frames).
Two were fairly simple files, T2 and T3, with a series of clean
frames (blue ©) followed by a series of anomalous frames (red
+). T2 contained many more clean frames than anomalous,
whilst T2 contained more anomalous than clean. The third file,
T1, contains 60% clean frames, split between two series (blue
© and green 2) , interspersed with four series of anomalous
frames (red + and �, magenta � and �) and four series of
unknown frames (black �, �, � and +). The unknown frames
are those where it is very difficult to tell whether or not the
structure in the frame has been kept or whether it is slightly

Fig. 7. Plot of the Winning Neurons for a 2-Layer SOM with 51 Neurons
in each First-Layer SOM and 31x31 in the Second-Layer SOM

Fig. 8. Plot of the Change in Time Taken by Increasing the Size of the First
Layer SOMs (Legend indicates the number of Neurons in each First Layer
SOM)

anomalous. The results for these are shown in figures 11.

As can be seen in all three files there is a good degree
of grouping for the different elements. In file T1 there are
three overlapping nodes, which can be considered as a par
score (with there being two periods of clean series), but there
is a void of unused neurons in the middle of the network.
Another issue with the grouping in this file is that two series
of clean neurons are each spread over two areas. However,
seeing as these areas are distinctly separate to the anomalous or
unknown frames, it lends evidence to support the supposition
that this network is capable of separately grouping clean and
anomalous data.



Fig. 9. Plots of the Winning Neurons for the Re-Runs of a 2-Layer SOM
with 31 Neurons in each First-Layer SOM and 21x21 in the Second-Layer
SOM

Fig. 10. Plots of the Winning Neurons for the Re-Runs of a 2-Layer SOM
with 41 Neurons in each First-Layer SOM and 21x21 in the Second-Layer
SOM



Fig. 11. Plots of the Winning Neurons of a 2-Layer SOM with 31 Neurons
in each First-Layer SOM and 21x21 in the Second-Layer SOM for Files T1,
T2 and T3 respectively top to bottom

A. Automating Classification

As has been shown, a network with 41 neurons in each
first layer SOM and a 21 by 21 SOM in the second layer

can produce a network capable of grouping and thereby
classifying magnetic motion capture data into clean, inverted
and anomalous. The key to making a system like this of
viable commercial use, is to then limit the amount of animator
interaction required for the system to identify which group
corresponds to which classification. A look at a graph of the
Euclidean distances between the winning neuron in the second
layer and the input vector (see figure 12), suggests that there
could be a link between an increase in the Euclidean distance
and change in classification of data in a series of frames. The
changeover points in F1 come in frames 51, 218 and 349,
and as can be seen, there are spikes in the Euclidean distance
around those points. There is however another spike/group of
spikes around frame 290 that would need to be explained
or compensated for in an automated scene. However, from
looking at the larger files there is a doubt to this being
a universal solution. One reason for this could be that the
larger epoch size introduces a degree of over-training into the
network.

Fig. 12. Plot of the Euclidean Distance between the Winning Neuron and
the Input Vector for the 41/21 Network with F1

V. CONCLUSION

Any system that seeks to automate the clean-up process of
magnetic motion capture data is required to both provide a
means of classifying into groups (A,B,C and D, etc.) and then
identify the meaning of a group (i.e. that group A is clean data,
B is anomalous data, C is inverted, etc.). In this paper we have
shown a mechanism that has the ability to complete the first
part of these requirements, and that there may be a means to
developing the second. Though several network combinations
produce good results for the separate of frames into groups the
one that gave good results for both the small and large files
was one with a 41-neuron 1D network for each sensor used
in the session, with the results feeding into the inputs of a
21-by-21 2D network in the second-layer. There are problems
with the process and the time taken for training a network are



still an issue. However, some of these could be alleviated by
the generation of a generic test file for a specific sensor set-
up, which contained series of clean, anomalous and inverted
frames for a given capture space. A network could then be
trained for that file and the different groups identified by a
human operator, this could then be used to identify frames in
other capture sessions using the same capture sensor set-up
and space.

So far no pre-processing has been applied to the data before
it is fed into the network, so that the effects of the capture
space can be taken into account. However, it may be that
the use of pre-processing techniques (such as centring or
sphering), improve the grouping of the outputs and/or make
the identification of what groups are easier. Other experiments
could focus on the size of an epoch and whether using a
random sample of all the frames rather than all of the frames in
a session can produce quicker training, without compromising
the usefulness of the technique. Alternatively, the use of
some form of stopping criteria could be employed to save
unnecessary training cycles and thereby improve the overall
timing of the system.
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