
Motocross and Artificial Neural Networks

Benoit Chaperot
School of Computing

The University of Paisley
Scotland

benoit.chaperot@paisley.ac.uk

Colin Fyfe
School of Computing

The University of Paisley
Scotland

colin.fyfe@paisley.ac.uk

ABSTRACT
In this paper, we investigate training artificial neural net-
works to ride simulated motorbikes in a new computer game
using two different training techniques, Evolutionary Algo-
rithms and the Backpropagation Algorithm. We show that
the backpropagation algorithm creates a rider which is faster
than that created by the evolutionary algorithm but at the
price of requiring a training set created by a human playing
the game. Also the evolutionary algorithm has the advan-
tage that it can find solutions which no human has previ-
ously found. Both methods create human-like performance
in the motocross game.

General Terms
learning, evolutionary algorithms, backpropagation

1. INTRODUCTION
In this paper, we investigate training artificial neural net-
works to ride simulated motorbikes in a new computer game
using two different training techniques, Evolutionary Algo-
rithms and the Backpropagation Algorithm. The use of such
methods in control is not new (see e.g.[4] or [9]). There are
various interesting aspects in using artificial neural networks
(ANN) in a motocross game. The main reason is that, al-
though the control of the bike is assisted by the game engine,
turning the bike, accelerating, braking and jumping on the
bumps involve behaviors which are difficult to express as
a set of procedural rules, and make the use of ANN very
appropriate.

Using a multilayered perceptrons ANN, we have shown [3]
that ANN can learn and perform like a human intelligence
(rather than a number-crunching machine). Our main aim
is then to have the ANN to perform as well as possible at
riding the motorbike, while still retaining the characteristics
of a human learning to ride. It is possible in a later stage
to cripple the neural network so its performance matches
that of a human player for maximum player enjoyment (this

has been called artificial stupidity), however one of our aims
is to make the computer player learn to ride the bike in a
human-like way so employing such tactics is not necessary

Path planning can be performed in an off-line manner such
as was investigated in [6]: in such work, there is typically a
static environment and the intelligence which may be based
on swarm intelligence, evolutionary algorithms, neural net-
works, artificial immune systems or any other technology
which brings intelligence to a task, must find a route through
the environment. Such methods do not allow for interaction
between players which is one of the features in which we
will be interested. Furthermore this method works well for
pedestrians but does not take account of the very dynamic
and uncertain nature of motorbike riding. While riding a
motorbike other very bumpy environment, part of the con-
trol is to determine and follow a path, another part is to
maintain the balance of the bike.

We know that a multilayered perceptron can learn any func-
tion with a countable number of discontinuities and so are
confident that we can learn to ride the bike using the back-
propagation algorithm, which is the standard method for
this type of ANN. However, we also wish to investigate
whether the weights of the ANN can be found by evolu-
tion. We are interested in both the nature of the learning
which takes place (in particular, whether it will appear more
human-like than that from the supervised learning method,
backpropagation) and also the effectiveness of the resulting
ANN i.e. whether one method of learning the parameters
outperforms the other.

The rest of this paper is structured as follows: in the next
section, we introduce the game, Motocross The Force; we
then discuss artificial neural networks and the two meth-
ods with which we train the ANNs, backpropagation and
evolutionary algorithms. We then perform simulations to
compare these methods and finally extend the better of the
methods in a variety of manners.

2. THE GAME
There are various interesting aspects in using artificial neu-
ral network methods in a motocross game. Because the de-
sign of an ANN is motivated by analogy with the brain, and
the rationale for their use in the current context is that en-
tities controlled by ANN are expected to behave in a human
or animal manner, and these behaviors can add some life
and content to the game. The human player has also the



possibility to create new tracks. ANNs have the capability
to perform well and extrapolate when presented with new
and different sets of inputs from the sets that were used to
train them; hence an ANN trained to ride a motorbike on
a track should be able to ride the same motorbike on an-
other similar track. ANN have the capability to train and
evolve. ANNs may be able to perform with good lap times
on any given track while still retaining elements of human
behaviour.

Motocross The Force is a motocross game featuring terrain
rendering and rigid body simulation applied to bikes and
characters. An example of it in use can be seen at

http:\\cis.paisley.ac.uk\chap-ci1

and screenshots from the game are shown in Figure 1. The
game has been developed and is still being developed in con-
junction with Eric Breistroffer (2D and 3D artist). A track
has been created in a virtual environment and the game in-
volves riding a motorbike as quickly as possible round the
track while competing with other riders who are software-
controlled.

There is one position known as a way point which marks
the position and orientation of the centre of the track, every
meter along the track. These way points are used to ensure
bikes follow the track and we will talk about positions in
way point space when giving positions with respect to the
way points. For example, for the evolutionary algorithms,
the score is calculated as follows:

• vPassWayPointBonus is a bonus for passing through
a way point.

• vMissedWayPointBonus is a bonus/penalty (i.e. nor-
mally negative) for missing a way point.

• vCrashBonus is a bonus/penalty (i.e. normally neg-
ative) for crashing the bike.

• vFinalDistFromWayPointBonusMultiplier is a
bonus/penalty (i.e. normally negative) for every meter
away from the center of the next way point.

The inputs to the ANN are:

• Position of the bike in way point space.

• Front and right directions of the bike in way point
space.

• Velocity of the bike in way point space.

• Height of the ground, for a (typically 30) ground sam-
ples, in front of the bike, relative to bike height.

• Position of track center lane, for c (typically 6) track
center lane samples, in front of the bike, in bike space.

3. ARTIFICIAL NEURAL NETWORKS
Artificial neural networks are usually software simulations
which are models at some level of real brains. We will,
in this paper, use multilayered perceptrons (MLP) though
other types of neural networks [3] may be equally useful for
the task in this paper.

The MLP consists of an input layer, x, whose neurons are
passive in that they merely hold the activation correspond-
ing to the information to which the network must respond.
In our case this will be local information about the terrain
which the artificial rider is currently meeting. There is also
an output layer , y, which in our case will correspond to the
actions (turn left/right, accelerate/decelerate) which are re-
quired to ride the bike. Between these two layers is the hid-
den layer of neurons which is so-called as it cannot directly
communicate in any way with the external environment; it
may only be reached via the input neurons and only affects
the environment via the output neurons.

The MLP is used in two phases: activation passing and
learning. Activation is passed from inputs to hidden neu-
rons through a set of weights, W . At the hidden neurons,
a nonlinear activation function is calculated; this is typi-
cally a sigmoid function, e.g. 1

1+exp(−act)
which mimics the

saturation effects on real neurons. Let us have N input neu-
rons, H hidden neurons, and O output neurons. Then the
calculation at the hidden neurons is:

acti =

NX
j=1

Wijxj ,∀i ∈ 1, ..., H

hi =
1

1 + exp(−acti)

where hi is the firing of the ith hidden neuron. This is then
transmitted to the output neurons through a second set of
weights, V , so that:

acti =

HX
j=1

Vijhj , ∀i ∈ 1, ..., O

oi =
1

1 + exp(−acti)

Thus activation is passed from inputs to outputs. The whole
machine tries to learn an appropriate mapping so that some
function is being optimally performed. Such networks use
supervised learning to change the parameters, W and V i.e.
we must have a set of training data which has the correct
answers associated with a set of input data. The most com-
mon method is the backpropagation algorithm.

In the experiments discussed in this paper, we used the same
activation function at the outputs as at the hidden neurons.

3.1 The Backpropagation Algorithm
Let the P th input pattern be xP , which after passing through
the network evokes a response oP at the output neurons.
Let the target value associated with input pattern xP be
tP . Then the error at the ith output is EP

i = tP
i − oP

i which
is then propagated backwards (hence the name) to deter-
mine what proportion of this error is associated with each
hidden neuron. The algorithm is:



1. Initialise the weights to small random numbers

2. Choose an input pattern, xP , and apply it to the input
layer

3. Propagate the activation forward through the weights
till the activation reaches the output neurons

4. Calculate the δs for the output layer δP
i = (tP

i −
oP

i )f ′(ActP
i ) using the desired target values for the se-

lected input pattern.

5. Calculate the δs for the hidden layer using
δP

i =
PN

j=1 δP
j wji.f

′(ActP
i )

6. Update all weights according to ∆P wij = γ.δP
i .oP

j

7. Repeat steps 2 to 6 for all patterns.

An alternative technique for computing the error in the out-
put layer while performing backpropagation has been inves-
tigated. Instead of computing the error as (tP

i − oP
i ), the

error has been computed as (tP
i − oP

i )Abs(t
P
i − oP

i ). This
has for effect to train the ANN more when the error is large,
and allow the ANN to make more decisive decisions, in re-
gard to turning left and right, and accelerating, breaking.

The backpropagation algorithm in the context of this mo-
tocross game requires the creation of training data made
from a recording of the game played by a good human player.
The targets are the data from the human player i.e. how
much acceleration/deceleration and left/right turning was
done by the human player at that point in the track. The
aim is to have the ANN reproduce what a good human player
is doing. The human player’s responses need not be the op-
timal solution but a good enough solution and, of course,
the ANN will learn any errors which the human makes.

3.2 Evolutionary Algorithms
Genetic algorithms (GAs) became popular after the seminal
work of Holland [5] in the 1970s and 80s. His algorithm is
usually known as the simple GA now since many of those
now using GAs have added bells and whistles [7]. Holland’s
major breakthrough was to code a particular optimisation
problem in a binary string - a string of 0s and 1s. He then
created a random population of these strings and evaluated
each string in terms of its fitness with respect to solving
the problem. Strings which had a greater fitness were given
greater chance of reproducing and so there was a greater
chance that their chromosomes (strings) would appear in the
next generation. Eventually Holland showed that the whole
population of strings converged to satisfactory solutions to
the problem.

Notice that the population’s overall fitness increases as a
result of the increase in the number of fit individuals in the
population. Notice, however, that there may be just as fit
(or even fitter) individuals in the population at time t-1 as
there are at time t. In evolution, we only make statements
about populations rather than individuals.

We can identify the problem of finding appropriate weights
for the MLP as an optimisation problem and have this prob-
lem solved using the GA: we must code the weights as float-

ing point numbers and use the algorithm on them with a
score function.

The algorithm is:

1. Initialise a population of chromosomes randomly.

2. Evaluate the fitness of each chromosome (string) in the
population

3. For each new child chromosome:

(a) Select two members from the current population.
The chance of being selected is proportional to
the chromosomes’ fitness.

(b) With probability, Cr, the crossover rate, cross
over the numbers from each chosen parent chro-
mosome at a randomly chosen point to create the
child chromosomes.

(c) With probability, Mr, the mutation rate, mod-
ify the chosen child chromosomes’ numbers by a
perturbation amount.

(d) Insert the new child chromosome into the new
population.

4. Repeat steps 2-3 till convergence of the population.

An alternative technique for crossover has also been investi-
gated: instead of crossing over the numbers (corresponding
to the ANN’s weights) from each chosen parent chromo-
some at a randomly chosen point to create the child chro-
mosomes, numbers from parents are averaged to create the
child chromosomes. This seems appropriate because we are
working with floating point numbers and not binary digits
and is a method which is sometimes used with the Evolution
Strategies [7] which are designed for use with floating point
numbers. Initial experimentation revealed that a blend of
these two techniques worked best. The particular crossover
technique was chosen randomly, with each technique being
given equal chance, for each new child chromosome and then
applied as usual.

For training purposes, the number of generations has been
set to 100, with a population of 80 ANN, elitism of 2 (num-
ber of the fittest chromosomes being passed directly from the
parent population to the child population) which is equal to
2.5%, a mutation rate of 0.1, a crossover rate of 0.7, and
a perturbation rate decreasing logarithmically from 0.8 to
0.008.

There is a simple reason why the perturbation is set high at
the beginning and low at the end: let us consider an ANN
attempting to jump bumps; if for example the bike goes at
30 km/h, then the bike can jump over perhaps one large
bump; if the bike goes at 45 km/h, then the bike may be
able to jump 2 large bumps at once. However if the bike
goes at 35 km/h, then the bike may land on the ascending
part of the second bump and is likely to crash. If the per-
turbation was not set high at the beginning, then an ANN
which is successfully jumping one bump would not be able to
attempt jumping two bumps at once; any increase in speed
would only take it into the crash regime not into the second



safe regime. The perturbation is set low at the end of the
training, because as we are approaching from the solution,
we don’t want to deviate too much from this solution.

Evaluation of fitness of each ANN is carried out for a dura-
tion of vTestTime seconds maximum, less if the bike is in
an unrecoverable situation or if the ANN is evaluated early
as not being fit. As an optimisation technique, the intel-
ligence and experience are shared by more than one bike;
more than one bike (typically 6) are on the track and the
same number of ANN is thus evaluated for fitness at any
given time.

4. EXPERIMENTS
The longest track is chosen for experiments. On this track,
ANN is presented with many different obstacles and situa-
tions.

For backpropagation, we recorded 20 minutes of the first
author playing the game to give a training data set of 120000
samples. The target sample is the human’s response in terms
of turn left/right and accelerate/decelerate, both of which
are recorded as floating point numbers between -1 and 1.

The number of iterations is set to 10 million, with, for each
iteration, a pattern chosen randomly from the 120000 sam-
ples. The learning rate is set to 0.0001. We found that a
higher number of iterations does not improve training signif-
icantly. A higher learning rate would make the ANN overfit
patterns and thus generalisation to new tracks would be lost.
A lower learning rate would make the ANN require a higher
number of iterations to learn, or it may even not learn at all
due to floating point limitations.

Early experiments with Evolutionary Algorithms have shown
some interesting behaviors: If vPassWayPointBonus is
too high (bonus), the ANN tend to learn to instantly crash
the bike immediately the bike has been spawned, relying on
the fact that the game engine spawns the bike on the track in
the right direction after a crash. If vCrashBonus is too low
(negative bonus, penalty too high), the ANN tend to learn
to ride away from the track, where it is safer. If vTestTime
is too high (say 2 min), then the ANN will tend to control
the bike in a very slow and safe manner, in order not to
crash and not put itself in an unrecoverable situation. If
vTestTime is too low, then the ANN will tend to control
the bike in a fast but risky manner.

After experimentation, the following values have been de-
termined as suitable:

• vPassWayPointBonus = 10

• vMissedWayPointBonus = 0

• vCrashBonus = 0

• vFinalDistFromWayPointBonusMultiplier = -10

• vTestTime = 60 sec

The sigmoid function chosen was m ∗ tanh(act
r

) with m a
multiplier, set to 1.1, and r, the activation response set to

4. m = 1.1 enables the sigmoid function to easily output
values between -1 and 1. r = 4 enables a responsive smooth
output from the ANN .

Since the inputs span different ranges, they are all scaled so
that on average they lie approximately in the range 0-1000.
The ANN output is used as the controls for the motorbike
and uses the same controls as a human player. The two con-
trols are acceleration/deceleration, and turn left/right. In
fact there is a small difference: instead of taking the ANN
output as the acceleration control, the output is taken as a
velocity control; this means the ANN does not need to do
some derivation work, and optimizes the use of ANN. The
derivation work can be done easily through simple compu-
tation.

4.1 Results
A good human player can ride a motorbike on one lap round
the long track in between 2 minutes 10 seconds and 3 min-
utes.

An ANN trained using evolutionary algorithms can ride the
motorbike around the same lap between 2 minutes 50 sec-
onds and 3 minutes 30 seconds.

An ANN trained using backpropagation algorithm using
training data from the good human player, can do lap times
between 2 minutes 25 seconds and 3 minutes 15 seconds.
The backpropagation method is thus rather better than the
evolutionary algorithms.

There has been recent work identifying the most important
data samples [8] and on creating pseudo data sets for bag-
ging [1] or boosting [2]. We therefore further wish to in-
vestigate the effect of different types of training data. For
example, some parts of the track are relatively easy and the
rider can accelerate quickly over these while other parts are
far more difficult and so more care must be taken. The latter
parts are also those where most accidents happen. Our first
conjecture was that training the neural network on these
more difficult part might enable it to concentrate its efforts
on the difficult sections of the track and so a training routine
has also been developed: each training sample has a prob-
ability to be selected for training the ANN proportional to
the error produced the last time the sample was presented
to the ANN. This allows us to train the ANN with more
difficult situations.

Using the backpropagation algorithm, the training routine
had a negative effect on the training. Without the routine,
the average lap time was 2 minutes and 40 seconds. With
the routine, the average lap time was 3 minutes. On the
other hand, when the routine was inverted (so that each
training sample now had a probability to be selected for
training proportional to the inverse of the error produced
the last time the sample was presented to the ANN) this
had a positive effect.

Finally, using back propagation algorithm, and the inverted
training routine, the ANN could ride the motorbike on one
lap round the long track in between 2 minutes 20 seconds
and 3 minutes. The performance is very similar to the per-
formance of a human player. Furthermore, the ANN tends



to ride the motorbike in a smooth and human like way, and is
also able to recover from unusual and unexpected situations
like getting back on track after a accident.

5. CONCLUSION
There are advantages and disadvantages in both training
methods, evolutionary algorithm and backpropagation al-
gorithm.

The evolutionary algorithm has the advantage that it can
be used to train a neural network, with no recorded training
set. The neural network can train and adapt to any new
environment or track. It also has the advantage that it is
possible at the end of training for the artificial network to
find solutions (in our case how to ride the motorbike along
the track) a human would not have found. Experiments
have shown that the solutions found were original, but were
not optimal and often not as good as a good human player
solution.

Backpropagation on the other hand gave better results than
evolutionary algorithms. The disadvantages of backprop-
agation are that it requires the creation of training data
made from the recording of the game played by good hu-
man player. Another disadvantage is that the neural net-
works trained with back propagation are not trained to deal
with unusual cases, like how to recover after an accident,
when the bike is not on the track and facing the wrong di-
rection, if the situation has not been met during the creation
of the training data, and may not recover as nicely as would
a human player or an ANN trained using evolutionary algo-
rithms.

One of the reasons the evolution algorithms did not perform
as well as backpropagation may be that the population size
and the number of generations were small relative to the
huge number of ANN weights to optimize.

Currently we are investigating the use of evolutionary algo-
rithm to select and optimize the set of inputs and parameters
used by the ANN, for example, the positions and number of
ground samples used as input to the ANN.

There are a number of possible questions arising out of the
current work: for example, we used the simple genetic al-
gorithm which is only one possibility from the field of un-
supervised exploratory learning algorithms. For example it
might be interesting to compare the results achieved here
with those from reinforcement learning. It is also far from
clear as to which type of game the above results might ap-
ply. It seems likely that the results in this paper might
be equally valid to other racing games, simulators and, in
general, games requiring analogue inputs but this is an em-
pirical question which can only be resolved through future
experimentation.

Other future work may be to use evolutionary algorithms
to train the ANN, with a much larger population size and
number of generations. Obviously this work is constrained
by time and/or processing power available.

Other work may include applying swarm intelligence to the
problem; for example to have good paths and bad paths

and crash points chemically marked along the track, and
have the ANN to recognize those chemical markings.

6. REFERENCES
[1] L. Breimen. Bagging predictors. Machine Learning,

(24):123–140, 1996.

[2] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting,.
Technical report, Statistics Dept, Stanford University,
1998.

[3] C. Fyfe. Local vs global models in pong. In
International Conference on Artificial Neural Networks,
ICANN2005, 2005.

[4] S. Haykin. Neural Networks- A Comprehensive
Foundation. Macmillan, 1994.

[5] J. Holland. Genetic algorithms and adaptation.
Technical Report 34, University of Michigan, 1981.

[6] G. Leen and C. Fyfe. An investigation of alternative
planning algorithms: Genetic algorithms, artificial
immune systems and ant colony optimisation. In
Conference on Computer Games: Design, AI and
Education, CGAIDE2004, 2004.

[7] I. Rechenberg. Evolutionsstrategie. Technical report,
University of Stuttgart, 1994.

[8] V. Vapnik. The nature of statistical learning theory.
Springer Verlag, New York, 1995.

[9] Various. http://www.ai-junkie.com/. Technical report,
2005.



Figure 1: 4 screen shots taken from the game


