
Creating an AI-Test Platform

Benoit Chaperot
School of Computing

The University of Paisley
Scotland

benoit.chaperot@paisley.ac.uk

Colin Fyfe
School of Computing

The University of Paisley
Scotland

colin.fyfe@paisley.ac.uk

ABSTRACT
In this paper we explain changes made to a motocross game
to allow other researchers to develop and experiment their
own artificial intelligence techniques in the game. The game
is split between an executable and AI DLL’s.

Keywords
Motocross game, software architecture, Artificial Intelligence,
Dynamic Link Library, AI, DLL

1. INTRODUCTION
Motocross The Force is a motocross game featuring ter-
rain rendering and rigid body simulation applied to bikes
and characters. In [2] and [3] we have investigated the use
of artificial neural networks (ANN’s) to ride simulated mo-
torbikes in this computer game.

The game offers a very good environment to experiment with
advanced artificial intelligence and data mining techniques;
although the control of the bike is assisted by the game
engine, turning the bike, accelerating, braking and jumping
on the bumps involve complex behaviours which are difficult
to express as a set of procedural rules, and make the use of
advanced AI techniques very appropriate.

Different kinds of ANN’s have been tested to control the
motorbikes: feed forward multi layered perceptrons, radial
basis functions networks and self organising maps. While
experimenting with these different kinds of networks, some
difficulties were noticed:

• The AI source code is in the middle of the game en-
gine code; this makes it difficult to read and maintain;
many files have to be modified to change the kind of AI
in use in the game; files can not be swapped between
researchers due to intellectual property issues.

• Only one kind of AI can be tested at a given time.

Direct comparison between different kinds of AI is not
possible.

In the research community, it happens often that one re-
searcher presents a new algorithm or AI or data mining
technique, and presents the technique in the context of one
particular problem or application. The applications used
are often very different. It appears that there is a need in
the research community for common platforms to evaluate
and benchmark individual AI techniques. This has been
discussed at the CIG06 conference in Reno, USA.

For data mining it is common practice to use standard datasets
to evaluate and compare different classification techniques
(see for example [4] ). For video games, there seem to be a
need for more common platforms to compare AI techniques.

Splitting the motocross game, between the game engine on
one side and the AI on the other side, allows for easier
AI code maintenance and implementation, and changes the
game into a common open platform for many developers and
researchers to test and compare different techniques.

In this paper we detail how we have split the game, and how
to implement new AI for the game.

2. CHANGES TO THE ARCHITECTURE
The game has been split between the game engine on one
side and the AI on the other side, the changes in architecture
are detailed below.

2.1 The Original Architecture

Figure 1: Original game architecture.

1. The game is composed of one executable and some
data files.



2. The AI source code is in the middle of the game engine
code; this makes it difficult to read and maintain.

3. There are some intellectual property issues in that only
the authors can implement an AI for the game.

4. Only one kind of AI can be used at a time in the game
to control motorbikes. Each motorbike can use its own
data file. It is not possible to directly compare AI
techniques.

2.2 The New Architecture

Figure 2: New game architecture.

1. The game is made of one executable, some DLL’s and
some data files. DLL stands for Dynamic Link Library.
Typically DLL’s provide one or more particular func-
tions and a program accesses the functions by creating
either a static or dynamic link to the DLL. In the con-
text of the new architecture for the motocross game,
each DLL implements one kind of AI and is linked
dynamically.

2. The AI source code is separated from the game engine
code, with one small DLL project per AI; this makes
it easy to read, implement and maintain.

3. The AI part is separated from the game engine and
is open source. Anyone can implement an AI for the
game.

4. Many kinds of different AI’s can be used at a time in
the game to control motorbikes. Each motorbike can
use its own DLL file and its own data file. It is possible
and easy to directly compare AI techniques.

3. GAME CLASSES AND STRUCTURES
Before implementing AI for the game, it is important that
the user has a good understanding of the various classes and
structures in use in the game.

3.1 Track
A track is a course over which races are run. Typically a
track is of variable width along its course. The tracks are
marked using WayPoints.

3.2 WayPoint
WayPoints are markers positioned on the centre of the
track, every metre along the track, and are used:

• To give course information to computer controlled bikes,
i.e. position, direction and width of the track.

• To monitor the performance: a bonus can be given to
a computer controlled bike for passing a WayPoint.

Figure 3: Screen shot taken from the game, the
white crosses on the left hand side represent Way-
Points.

3.3 Game Engine
There is one game engine, it is implemented by the exe-
cutable. It is everything but the AI, and is responsible for
updating the simulation.

3.4 AI
There is one AI per computer controlled bike. Each AI can
be written to or read from an AI data file. Each AI makes
use of an AI DLL. More than one bike can share the same
DLL. An AI is trained to make a decision given a situation.

3.5 Situation
The situation is the general state of the bike, position, ori-
entation and velocity relative to the ground.

3.6 Decision
These are commands and are the same as the controls for
the human player:

• Accelerate, brake.

• Turn left, right.

• Lean forward, backward.

3.7 SampleData
SampleData is the main structure used for communication
between the game engine (executable) and the AI DLL. Typ-
ically the game engine fills the situation fields of the struc-
ture and pass the structure to the AI DLL; the AI DLL fills
the decision fields of the structure, given the situation, and
passes it back to the game engine; the game engine updates
the state of the corresponding computer controlled bike and
the simulation accordingly.

3.8 Training Set
A training set is a structure used for the training of AI. A
training set is a collection of SampleData’s made from the
recording of a human player playing the game. Each sample
contains a situation and the corresponding human player’s



decision. AI’s are trained to make the same decision as the
human player, given a situation.

3.9 Terrain
Structure used to give ground height information.

3.10 Weight
A Weight is an AI parameter that is to be optimised using
for example Genetic Algorithms. Typically a weight is a
connection strength between two neurons in an ANN.

3.11 Genetic Algorithms
Training is considered as an optimisation. GA’s are used to
improve the AI’s performance by modifying AI weights. GA
are implemented by the executable.

4. IMPLEMENTING NEW AI

Figure 4: Communication between the game engine
executable and the AI DLL.

An important feature of the architecture is that the exe-
cutable calls DLL functions, for example for decision mak-
ing, but the AI DLL’s can also call executable functions,
for example to obtain more information about a situation,
before making a decision. It is a two way communication
process.

4.1 DLL Functions
In order to be recognised by the game executable each AI
DLL must be placed in a particular folder and implement a
set of functions; these functions can be grouped into cate-
gories.

4.1.1 General Operation Functions
The general operation functions are:

• Creation: this function creates an AI and returns a
void pointer on the newly created AI to the executable.

• Destruction

• Decision Making: this function returns a decision to
the executable, given a situation.

• Render: this function is called every time the game is
rendered; this gives the opportunity to the AI DLL to
display AI information; this is mainly used for debug-
ging purposes.

After AI creation, the executable keeps a void pointer to the
AI and passes it as a parameter to all subsequent calls to
the AI DLL.

4.1.2 Training Functions
These functions are typically used for training the AI using
back propagation techniques.

• Generate AI From Training Set: this function is called
every time the user wants an AI to learn from a train-
ing set. The DLL loads and processes the training set.

• Generate AI From Training Set Update: this function
is called once per game update: the DLL updates the
training or generation of an AI from a training set;
typically there are 25 backpropagation iterations per
game update and 100 game updates per second.

• Is Generating AI From Training Set: returns true if
the AI is currently training from training set.

4.1.3 Weights Functions
These functions are typically used for training the AI using
genetic algorithms techniques.

• Put Weights

• Get Weights

• Set Generation

• Get Generation

• Save Weights

• Get Number Of Weights

4.1.4 Version Functions
• Get AI Name: returns AI DLL name, one name per

AI DLL.

• Get AI Version: returns version of AI implemented.

• Get Debug: returns true if this is a Debug version of
AI DLL.

All these functions were found useful to carry out our exper-
iments. To make the architecture simpler, an AI DLL is re-
quired to implement all these functions in order to be recog-
nised by the executable. If some functions are not needed
(for example the user does not want to use GA), then the
user can simply create empty functions.

The executable and AI DLL’s make use of the DirectX li-
brary for vector and matrix structures and operations.

4.2 Executable Functions
The executable makes the following functions available to
AI DLL’s.

4.2.1 WayPoint Functions
AI DLL’s can make calls to the executable to obtain the
following interpolated information about WayPoints:

• Transformation matrix

• Position



• Direction

• Width

The information is interpolated between WayPoints. The
functions take two parameters, a WayPoint index, with one
WayPoint every metre along the track, and a distance in
metres along the track from this WayPoint.

4.2.2 Drawing Functions
AI DLL’s can make calls to the executable to draw the fol-
lowing kind of primitives on the screen:

• 3D Vertices

• 3D Lines

• Text

• Rectangles

These functions are used mainly for debug purposes and take
a colour as one of their parameters.

4.2.3 Track Functions
AI DLL’s can make calls to the executable to obtain infor-
mation about tracks and terrain:

• Height: a function returns the terrain height at a given
position.

• Track creation: the DLL can load tracks; this is use-
ful when processing training sets; a training set can
contain training data from more than one track.

• Track unique identifiers: the DLL can check that a
track has not changed since the time the training set
was generated.

4.2.4 Other Functions
• Get Version: returns version of the executable.

• Forward transform: a function returns a space centred
at the origin of the motorbike; the Z axis points up
and the Y axis follows the horizontal velocity direc-
tion. This space is more convenient than bike space to
represent and transform world objects in relation to
the bike.

4.3 Operation
The new AI system works as follow:

1. The executable loads all DLL’s contained in a given di-
rectory; if the DLL implements all functions described
above, and versions match, then it is kept loaded, oth-
erwise it is unloaded.

2. Each computer controlled bike loads its own AI data
file; each AI data file is to be associated with an AI
DLL. The association between data files and DLL’s
is done by matching the name contained in data file
header with the names given by the DLL’s.

3. The AI is created using the matching AI DLL Cre-
ateAI function, and all future AI function calls will
call the matching AI DLL functions.

5. ILLUSTRATIVE RESULTS
It was feared that this new AI system would run slower
than the original AI system because of the high number
of calls between the executable and the DLL’s. It actually
runs faster, despite the high number of calls between the
executable and the DLL’s, because the AI code is now tidier
and smaller than before.

Two different kinds of AI have been implemented using the
new architecture, feed forward multi layered perceptrons
(MLP), and self organising map (SOM). The source code
is inspired by [1]. Source code and a free version of the
game will be made available at the following address:

http://cis.paisley.ac.uk/chap-ci1

It is possible to easily compare in real time the two kinds
of AI. The two kinds of ANN’s used the same number of
weights and were trained using the same training data. It
appears that the MLP performs better but the SOM is less
computational intensive. The ANN’s behave differently and
make different decisions and mistakes. Increasing the num-
ber of weights for the SOM networks enables for better per-
formance but the performance is always less than that of
MLP networks.

The main problem with the SOM’s is that their internal
operation prevents them from differentiating between im-
portant and not so important inputs. The networks fail to
make decisive decisions.

6. CONCLUSION
This new architecture for the game allows us to easily de-
velop and experiment with AI techniques. Source code and
a free version of the game will be made available soon. We
hope that many researchers will join us at developing new
and innovative AI.

Future work may include the creation of a Motocross The
Force Cup, where many different AI’s will compete at rac-
ing bikes in the game.

Other work may involve the use of large scale distributed
processing to optimise existing AI using genetic algorithms.

7. REFERENCES
[1] M. Buckland. http://www.ai-junkie.com/. Technical

report, 2005.

[2] B. Chaperot and C. Fyfe. Motocross and artificial
neural networks. In Game Design And Technology
Workshop 2005, 2005.

[3] B. Chaperot and C. Fyfe. Improving artificial
intelligence in a motocross game. In CIG06, 2006.

[4] D. Michie, D. J. Spiegelhalter, and C. C. Taylor,
editors. Machine learning, neural and statistical
classification. Ellis Horwood, 1994.


