Topographic Products of Experts applied to a Motocross Simulation and Simulation Stabilisation
Benoit Chaperot
School of Computing
The University of Paisley
Paisley, PA1 2BE, SCOTLAND.
Tel:+(44)1418483328
benoit.chaperot@paisley.ac.uk

Colin Fyfe
School of Computing
The University of Paisley
Paisley, PA1 2BE, SCOTLAND.
Tel:+(44)1418483305
colin.fyfe@paisley.ac.uk

ABSTRACT
In this paper, we investigate the use of Topographic Products of Experts (ToPoE), a new form of self-organizing map, to ride simulated motorbikes in a computer game. We also report on the process of improving the stability of a motocross game. The game is Motocross The Force; most of the stabilisation work has been done on the physics engine; the game uses a custom version of ODE (Open Dynamics Engine).
Categories and Subject Descriptors
J.2 [Computer Applications]: PHYSICAL SCIENCES AND ENGINEERING – Engineering, Physics.

General Terms
Algorithms, Performance, Design, Reliability, Experimentation, Theory.

Keywords
Artificial intelligence, topology preserving mapping, physics engine, real time physics simulation, floating point numbers, gyroscopic forces, game development environment, Visual Studio.
1. INTRODUCTION

Video games offer a good environment to experiment with data mining and advanced artificial intelligence techniques. Thanks to physics simulation and 3D graphics, current video games offer very rich environments with complex problems to solve.
Motocross The Force is a motocross game featuring terrain rendering and rigid body simulation applied to bikes and characters. In [1], [2] and [3] we have investigated the use of artificial neural networks (ANN's) to ride simulated motorbikes in this computer game. In this paper, we investigate the use of Topographic Products of Experts (ToPoE), a new form of self-organizing map (SOM) to ride simulated motorbikes in the same computer game and we compare the performance with other forms of AI and SOM’s.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

We are also interested in investigating evolutionary techniques, like Genetic Algorithms ([4]

 REF _Ref178500865 \r \h
[5]

 REF _Ref178500866 \r \h
[6]

 REF _Ref178500867 \r \h
[7]). These techniques can take a lot of time to train; the game must run for a few hours or even a few days before we can obtain satisfactory results.
Even with simple Artificial Neural Networks and the back propagation algorithm, it can take up to a few hours to fully optimize the performance of a network.

Also after a few modifications to the game, especially in the development environment and the libraries used, the game slowly became unstable. Most of the instability comes from the physics engine.
In this report we also describe the steps taken in order to increase the stability of the simulation and ensure the game can run for a few days without crashing.

2. TOPOGRAPGHIC PRODUCTS OF EXPERTS
2.1 Description
In this section, we introduce a new topology preserving mapping we call the Topographic Products of Experts (ToPoE) [13].

A topographic mapping (or topology preserving mapping) is a transformation which captures some structure in the data so that points which are mapped close to one another share some common feature while points which are mapped far from one another do not share this feature. The most common topographic mappings are Kohonen's self-organizing map (SOM) [12] and varieties of multidimensional scaling [10]. The SOM was introduced as a data quantisation method but has found at least as much use as a visualisation tool. It does have the disadvantage that it retains the quantisation element so that while its centres may lie on a manifold, the user must interpolate between the centres to infer the shape of the manifold.
In a product of experts, all the experts take responsibility for all the data: the probability associated with any data point is the (normalised) product of the probabilities given to it by the experts.

We envisage that the underlying structure of the experts can be represented by K latent points,
[image: image1.wmf]K

t

t

t

,...,

,

2

1

. To allow local and non-linear modelling, we map those latent points through a set of M basis functions,
[image: image2.wmf]()

(),...,

(),

2

1

M

f

f

f

. This gives us a matrix
[image: image3.wmf]F

 where
[image: image4.wmf])

(

k

j

kj

t

f

=

F

.

Thus each row of
[image: image5.wmf]F

 is the response of the basis functions to one latent point, or alternatively we may state that each column of
[image: image6.wmf]F

 is the response of one of the basis functions to the set of latent points. One of the functions,
[image: image7.wmf]()

j

f

, acts as a bias term and is set to one for every input. Typically the others are Gaussians centred in the latent space. The output of these functions are then mapped by a set of weights,
[image: image8.wmf]W

, into data space.
[image: image9.wmf]W

 is
[image: image10.wmf]D

M

´

, where
[image: image11.wmf]D

 is the dimensionality of the data space, and is the sole parameter which we change during training.
We will use
[image: image12.wmf]i

w

 to represent the ith column of
[image: image13.wmf]W

and
[image: image14.wmf]j

F

 to represent the row vector of the mapping of the
[image: image15.wmf]th

j

 latent point. Thus each basis point is mapped to a point in data space,
[image: image16.wmf]T

j

j

W

m

)

(

F

=

.

We may update
[image: image17.wmf]W

either in batch mode or with online learning. To change
[image: image18.wmf]W

in online learning, we randomly select a data point, say
[image: image19.wmf]i

x

. We calculate the current responsibility of the
[image: image20.wmf]th

j

latent point for this data point,

[image: image21.wmf]å

-

-

=

k

ik

ij

ij

d

d

r

)

exp(

)

exp(

2

2

g

g

 (1)

where
[image: image22.wmf]q

p

pq

m

x

d

-

=

, the Euclidean distance between the
[image: image23.wmf]th

p

data point and the projection of the
[image: image24.wmf]th

q

latent point (through the basis functions and then multiplied by
[image: image25.wmf]W

). If no centres are close to the data point (the denominator of (1) is zero), we set
[image: image26.wmf]j

r

K

ij

"

=

,

1

.

Define
[image: image27.wmf]å

=

F

=

M

m

km

md

k

d

w

m

1

)

(

, i.e.
[image: image28.wmf])

(

k

d

m

 is the projection of the
[image: image29.wmf]th

k

latent point on the
[image: image30.wmf]th

d

 dimension in data space. Similarly let
[image: image31.wmf])

(

n

d

x

 be the
[image: image32.wmf]th

d

 coordinate of
[image: image33.wmf]n

x

 .
[13] shows that a learning rule which maximises the likelihood of the data under the model is:

[image: image34.wmf]å

=

-

F

=

D

K

k

kn

k

d

n

d

km

md

n

r

m

x

w

1

)

(

)

(

)

(

h

(2)

where we have used
[image: image35.wmf]n

D

to signify the change due to the presentation of the
[image: image36.wmf]th

n

data point,
[image: image37.wmf]n

x

, so that we are summing the changes due to each latent point's response to the data points. Note that, for the basic model, we do not change the
[image: image38.wmf]F

 matrix during training at all.
2.2 Experiments
A ToPoE network is used to control a motorbike in the motocross game. In the context of the game, the data is of dimension D, with

[image: image39.wmf]Output

Input

D

D

D

+

=

[image: image40.wmf]Input

D

is the number of inputs; the inputs are the state or situation of the bike, i.e. position, orientation and velocity of the bike relative to the track, and information about the terrain. In [1], these were the inputs to Artificial Neural Networks.

[image: image41.wmf]Output

D

is the number of outputs; the outputs are the decisions made according to the state or situation of the bike, i.e. accelerate or brake, turn left or right, lean forward or backward. In [1], these were the output from ANN’s.

The dataset is the recording of the first author playing the game on various motocross tracks. Each data sample contains a situation and the corresponding human response or decision to this situation.
During training, the responsibilities of the experts are calculated over the full dimensionality of the data (inputs and outputs). Then, when the ToPoE network is actually used inside the game to control a motorbike, the responsibilities of the experts are computed using only the first
[image: image42.wmf]Input

D

dimensions.
The output is computed as:

[image: image43.wmf]å

=

+

=

K

k

kn

k

d

DInput

d

r

m

O

1

)

(

)

(

2.3 Results and Discussion
The newly created AI is compared to other AI’s in table 1. All AI’s are trained from the same training set, the recording of the first author racing a bike on track Long; the average lap time for the human player was 2min08sec.
We see that the ToPoE AI is performing better than the Kohonen AI. The difference is due to the fact that Kohonen’s self-organizing map is a quantisation method; it does not interpolate between projections of latent points into data space; the method will try to find the best match between a given situation, and situations it has learned, then give the corresponding decision. The ToPoE is able to interpolate between many similar situations, and so the final decision is an interpolation of different decisions.

However the ToPoE requires a lot more processing than both of the other methods to learn and to make a decision.

The Multi Layer Perceptron (MLP) network performs better than both topology-preserving methods. One reason is that the architecture of the network allows it to differentiate between important and not so important inputs while propagating the signal and producing an output. This is something that a Euclidean distance-based algorithm like the topology-preserving methods cannot do.
At the same time as we were doing these experiments on this new form of self-organizing map, we were also working on changing the game development environment, and we were faced with some instability issues.
Table 1: AI’s comparison table
	
	Size
	Training Time for 100’000 iterations
	Decision Time

	Lap Time Performance Track Long

	MLP
	16 KB
	10sec
	0.1ms
	2min 25sec

	Kohonen
	17KB
	1.3sec
	0.17ms
	3min 11sec

	Kohonen2
	62 KB
	2.0sec
	0.65ms
	3min 00sec

	ToPoE

K=200,M=26
	16 KB

	13min 40sec
	0.22 ms
	3min 05sec

	ToPoE 2

K=400,M=37
	64 KB
	54min
40sec
	0.37ms
	2min
58sec

3. REASONS TO CHANGE THE PROGRAMMING ENVIRONMENT

The development of the game started in 2003 using Visual Studio 6. Visual Studio 6 was released by Microsoft in 1997, 10 years ago and this programming environment is not supported anymore.

A simplified diagram of the game can be found in appendix.

The game makes use of diverse libraries, like Open Dynamics Engine, DirectX. The latest versions of these libraries do not support Visual Studio 6 any more. These libraries get updated regularly, each time with better performance, functionalities and reliability. It is unproductive to spend more and more time and effort each time to convert projects and libraries for Visual Studio 6. Soon it won’t be possible at all to use the latest versions of these libraries with Visual Studio 6. It is also highly possible that executables compiled with Visual Studio 6 may not run as well with future versions of Windows.

One attempt has been made to convert the game from C++/DirectX to C#/XNA. It proved to take more time than originally expected to convert all files. Most of the game has been converted or rewritten and can now run on an XBOX 360 (managed code version). The performance is lower than on PC, despite the powerful hardware, because the Just-In-Time compiler and Common Language Runtime are very slow compared to most C++ compilers and runtime libraries. This however was beneficial because it gave us an insight into and experience of programming for the XBOX 360. Future work will involve programming for the XBOX 360 powerful GPU (graphical processing unit).

Having the C++ version game to compile and run using the latest environment and runtime libraries for Windows helps ensure that the game can be more easily converted to other platforms like the XBOX 360 (native code version).

The added functionalities offered by the new version of Visual Studio are quite limited. The increase in functionality is much greater if we start using one of the managed languages and the .NET environment.

Visual Studio 2005 Express is free, whereas Visual Studio 6 is commercial and requires a license. The biggest reason why the game was converted from Visual Studio 6 to Visual Studio 2005 is to allow other researchers and programmers to work easily with the game, without the requirement to acquire a license, install a development environment, service packs and libraries that are 10 years old or older. It allows many other researchers and programmers to develop for the game, including AI using the Motocross The Force AI SDK.

The change in game development environment helps in ensuring the development of the game, AI and AI SDK can continue for a few more months or years.

4. CONSEQUENCES FROM THE CHANGE IN ENVIRONMENT

The new 2005 compiler is stricter than the 1997 version. One example is the For loop; by default the option “Force Conformance In For Loop Scope” is set to Yes.

The following code used to compile with Visual Studio 6:

for (int i=0; i<10; i++)
{
;//do something

}

for (i=0; i<10; i++)
{
;//do something else

}
With Visual Studio 2005 and default options, the compiler displays an error message, the i variable is undefined in the second loop.

By default the compiler now outputs many warning messages for using functions which are considered unsafe and have been depreciated, especially string manipulation functions.

Other changes include changes in library; the single-threaded C RunTime library (libc.lib, libcd.lib) is no longer available. Only the multithreaded C RunTime library is available in the new environment.

The new source editor offers Intellisense, a form of auto completion that makes writing code easier.

After a few hours, changes were made in the 7 Visual Studio projects making the game. The projects are the game engine, physics engine (ODE), script engine (LUA), collision engine (OPCODE) and 3 AI DLL’s (Kohonen, Minimal and MLP).

The game compiled successfully with no further warnings. The game then ran successfully, but it crashed after a few minutes; these crashes are due to the fact that the new compiler and runtime libraries are stricter than the previous compiler and runtime libraries. Most of the crashes seemed to happen in the physics engine.

5. STABILIZATION

5.1 Gyroscopic Forces

Gyroscopic forces are forces that occur in rotating bodies and assist in the stability of vehicles like bicycles and motorbikes.

ODE does not handle rotating objects well, and by default, the code taking care of applying gyroscopic forces on rotating objects is disabled.

If the code taking care of applying gyroscopic forces on rotating objects is disabled, then the simulation is stable, but the simulation does not feel or look natural. The bike is unstable because there are no more forces to assist in the stability.

If the code is enabled, then the simulation feels and looks natural and the bike is stable, however the simulation is not always stable and can explode or crash after a few hours.

Explosion occurs when one object starts spinning faster and faster, then colliding against other objects; soon all objects get high energy and fly around the physics scene.

According to the ODE documentation [8], section 12.12, ODE does not handle rotating bodies well in free space, because it uses a first order semi-implicit integrator.

If we look at the gyroscopic code in file QUICKSTEP.CPP, we can see how it works.

For each body:

1. The inertia tensor is transformed to global space.

2. The angular momentum is computed as
[image: image44.wmf]w

I

L

=

, with
[image: image45.wmf]I

 the inertia tensor and
[image: image46.wmf]w

the angular velocity.

3. The gyroscopic torque is computed as
[image: image47.wmf]L

T

´

=

w

, then added to the body torque accumulator.

One problem with this implementation is that because some torque is applied each frame, the angular energy increases.

Some energy is lost inside the solver, and through damping in collisions with other bodies, but sometimes if the body is rotating in free space, then its energy only increases and it quickly tends to ∞.

Another approach with which we have experimented is:

1. The inertia tensor is transformed to global space.

2. The angular momentum is computed as
[image: image48.wmf]w

I

L

=

, with
[image: image49.wmf]I

 the inertia tensor and
[image: image50.wmf]w

the angular velocity.

3. The gyroscopic torque is computed as
[image: image51.wmf]L

T

´

=

w

.

4. The new velocity of the body, after only the gyroscopic torque has been applied is computed as
[image: image52.wmf]Tdt

I

1

2

-

+

=

w

w

.

5. The new angular momentum is computed as
[image: image53.wmf]2

2

w

I

L

=

6. The angular momentum of a free rotating body should not increase with time; the new angular velocity of the body is normalised so that its angular momentum is the same as it was before the gyroscopic torque was applied:
[image: image54.wmf]2

2

2

L

L

w

w

=

¢

.

7. This new velocity is set to the body; no gyroscopic torque or force is added to the accumulators.

This proves to be successful; the simulation looks natural and seems a lot more stable. The bikes are also stable.

This approach seems to give better results than the original approach, at the expense of increased computational cost; it is possible to reduce the computational cost by only computing and applying gyroscopic forces on bodies truly affected by gyroscopic forces, rotating faster than a given angular velocity (say 1 revolution per second).

The stability of the simulation has improved, but it is not yet totally stable and we need to continue to develop this aspect.

5.2 Floating Point Numbers

We are using single precision (32bit) floating point numbers in our simulation. Single precision numbers are faster to compute but give less accuracy, than double precision (64bit) floating point numbers. Single precision floating point numbers suit the game well; we are concerned about processing time and having as many dynamic objects as possible in our scene, and we are less concerned about the accuracy of the simulation.

After a few hours of running the simulation, one object is given a position with one or more NAN (Not A Number) values, and as a result the object collides with every other object in the simulation and the simulation crashes.

After investigation, it seemed that the problem came from the physics engine and more specially the collision engine.

One way to investigate is to use a macro like this to check if a value is a number:

#define CHECKV(a)
ASSERT(_isanan(a)==0)
For example, at one point in the program where we want to check if variable var is a number, we write:

CHECKV(var);

And the assertion will fail if var is not a number.

If we want to check if variables are numbers and are finite, we can use the following macro:
#define CHECKV(a)
ASSERT(_finite(a)!=0)
We can write similar macros to check vectors and matrices.

After an assertion failed, one can have a look up the flow of execution to see what has caused the problem. If the problem can not be easily identified, then adding more checks and repeating the process many times allows us to get closer and closer to the source of the problem until we can identify it.

Common causes of the problem are divisions by zero, or passing out of range values to mathematical functions; for example if a negative value is passed to a square root function, then the function can return NAN.

These problems did not occur before because with the old compiler, the compiled code was slightly different and gave very slightly different floating point number results; perhaps also the new compiler and runtime libraries are stricter.

It is known that the same floating operations with the same numbers, give very slightly different results, according to the complier, runtime libraries and hardware.

5.3 Memory

After a few hours, the game crashes due to allocating too much memory. Each frame the game allocates more and more memory.

One way to solve this kind of problem is to use a memory profiler; we decided to use Visual Leak Detector [9].

Visual C++ provides built-in memory leak detection, but its capabilities are minimal at best. Visual Leak Detector was created as a free alternative to the built-in memory leak detector provided with Visual C++. Here are some of Visual Leak Detector's features, none of which exist in the built-in detector:

· Provides a complete stack trace for each leaked block, including source file and line number information when available.

· Provides complete data dumps (in hex and ASCII) of leaked blocks.

· Customizable level of detail in the memory leak report.

Other after-market leak detectors for Visual C++ are already available. But most of the really popular ones, like Purify and BoundsChecker, are very expensive. A few free alternatives exist, but they're often too intrusive, restrictive, or unreliable. Here are some key advantages that Visual Leak Detector has over many other free alternatives:

Visual Leak Detector is cleanly packaged as an easy-to-use library. We don't need to compile its source code to use it. And we only need to make minor additions to our own source code to integrate it with our program.

· In addition to providing stack traces with source files, line numbers, and function names, Visual Leak Detector also provides data dumps.

· It works with both C++ and C programs (compatible with both new/delete and malloc/free).

· The full source code to the library is included and it is well documented, so it is easy to customize it to suit our specific needs.

The game is compiled to run with Visual Leak Detector; at the end of the run, Visual Leak Detector says that there are no memory leaks; the program has de-allocated everything it has allocated, however it has obviously allocated too much.

One way to solve the problem is to add an extra function to the memory profiler which is possible because the memory profiler comes with its source code.

This new function prints information in the Debug window about all the blocks of memory that have been allocated since the last time this function was called (or all the blocks of memory since the program started till the first call to this function).

Using this function, it was very easy to find out what was causing the problem (allocation of memory at every game update), and the problem was corrected.

After all these changes, the program was stable again and could run for days without crashing. We could now continue working on what is of interest to us: using the game to experiment with innovative AI and data mining techniques.

6. CONCLUSION
Experiments with ToPoE proved that ToPoE performs better than the Kohonen SOM at controlling motorbikes in the motocross simulation. However both topology preserving mappings techniques are outperformed by MLP networks.
The game is a very good platform to experiment with AI and evolution techniques; however it requires a lot of human work to maintain and update in relation to other tools and libraries.

The development of the Motocross The Force game is an iterative process, with steps involving updating the source code in relation to other tools and libraries, and experimenting with AI and evolution techniques.

Future work will involve more experimentation in AI and in evolutionary algorithms.
7. REFERENCES

[1] B. Chaperot and C. Fyfe, “Motocross and Artificial Neural Networks”, Game Design And Technology Workshop 2005, Liverpool, November 2005.
[2] B. Chaperot, C. Fyfe, "Improving Artificial Intelligence in a Motocross Game", IEEE Symposium on Computational Intelligence and Games, CIG'06, May 2006.

[3] B. Chaperot, C. Fyfe, "Creating an AI-Test Platform", Game Design And Technology Workshop 2006, Liverpool, November 2006.
[4] J. Holland, “Genetic algorithms and adaptation”, Technical Report 34, University of Michigan, 1981,University of Stuttgart, 1994.
[5] G. Leen and C. Fyfe, “An investigation of alternative planning algorithms: Genetic algorithms, artificial immune systems and ant colony optimisation”, in Conference on Computer Games: Design, AI and Education, CGAIDE2004, 2004.

[6] I. Rechenberg, “Evolutionsstrategie”, technical report, University of Stuttgart, 1994.

[7] M. Buckland, http://www.ai-junkie.com/, technical report, 2005.

[8] R. Smith, “Open Dynamics Engine v0.5 User Guide”, Technical Report, May 2004.

[9] D. Moulding, “Visual Leak Detector - Enhanced Memory Leak Detection for Visual C++”, http://www.codeproject.com/tools/visualleakdetector.asp, Technical Report, November 2006.
[10] T. Hastie, R. Tibshirani, and J. Friedman. “The Elements of Statistical Learning”. Springer, 2001.

[11] C. M. Bishop, M. Svensen, and C. K. I. Williams. Gtm: The generative topographic mapping. Neural Computation, 1997.

[12] T. Kohonen. “Self-Organising Maps”. Springer, 1995.
[13] C. Fyfe, “Two topographic maps for data visualization”,Data Mining and Knowledge Discovery, 14, pages 207-224, Jan 2007.
8. APPENDIX: Simplified Diagram of the Motocross Game

[image: image55]
· The main executable (TheForce.exe) is made of different libraries, each library having its own functionalities. TheForce is the game engine.

· All DLL’s that are in a given location (AI directory) and implement a given set of functionalities are recognised by the game engine as AI DLL’s, and loaded.
· Each AI Data file is an instance of a given AI, responsible for riding motorbikes in the game. Each data file is associated with its corresponding DLL; the name of the associated DLL is contained in the data file.
·
AI DLL’s can make use of configuration files, to allow the user to modify parameters.
· This architecture allows us to directly compare the Topographic Products of Experts technique with other techniques.
AI Config File

AI Data Files

AI Config File

AI Data Files

C,C++ Runtime Library

TheForce Engine

AI Config File

AI Data Files

Minimalistic Symbolic AI DLL (Minimal.DLL)

ToPoE SOM AI DLL (ToPoE.DLL)

Kohonen SOM AI DLL (Kohonen.DLL)

Multi Layered Perceptron AI DLL (Neural.DLL)

DirectX Library (3D graphics, sound, user inputs, 3D math)

AI Config File

AI Data Files

Various files including scripts, models, tracks, textures, sound.

Physics Engine (ODE.LIB)

Script Engine (LUA.LIB)

Motcross The Force Executable (TheForce.EXE)

PAGE

_1252511063.unknown

_1252511986.unknown

_1252512271.unknown

_1252512541.unknown

_1252513326.unknown

_1254831237.unknown

_1254831503.unknown

_1252513759.unknown

_1252514910.unknown

_1252512802.unknown

_1252513269.unknown

_1252512571.unknown

_1252512599.unknown

_1252512338.unknown

_1252512365.unknown

_1252512315.unknown

_1252512229.unknown

_1252512247.unknown

_1252512196.unknown

_1252511454.unknown

_1252511503.unknown

_1252511616.unknown

_1252511483.unknown

_1252511219.unknown

_1252511386.unknown

_1252511164.unknown

_1252510838.unknown

_1252510850.unknown

_1252510934.unknown

_1252511015.unknown

_1252510901.unknown

_1252510455.unknown

_1252510826.unknown

_1252510586.unknown

_1252510752.unknown

_1252510486.unknown

_1252336937.unknown

_1252337406.unknown

_1252506506.unknown

_1252337141.unknown

_1252336180.unknown

_1252336086.unknown

_1252336098.unknown

_1252336000.unknown

